"วัสดุก่อสร้างจากเถ้าชีวมวล" ทางเลือกใหม่ในการพัฒนาอย่างยั่งยืน
เขียนบทความโดย RISC | 5 วันที่แล้ว
แก้ไขล่าสุด : 5 วันที่แล้ว
รู้หรือไม่ว่า การผลิตไฟฟ้า 1 MW ทำให้เกิด “เถ้าชีวมวล” ประมาณ 200-400 ตัน/ปี
เถ้าชีวมวล หรือที่เรียกว่า Wood ash นั้นคืออะไร แล้วทำไมเราถึงต้องมาสนใจในเรื่องนี้?
เถ้าชีวมวล จัดเป็นของเสียจากกระบวนการผลิตพลังงานไฟฟ้าโดยใช้ชีวมวลเป็นแหล่งเชื้อเพลิง ซึ่งชีวมวลแต่ละชนิดจะมีปริมาณเถ้าที่แตกต่างกัน โดยทั่วไปจะอยู่ที่ประมาณ 1-3% หากยิ่งผลิตไฟฟ้ามากเท่าไหร่...ก็ยิ่งเกิดเถ้าชีวมวลมากขึ้นเท่านั้น
ปัจจุบันประเทศไทยมีโรงไฟฟ้าชีวมวลจำนวน 226 แห่ง และมีกำลังการผลิตรวมทั้งสิ้น 2,110 MW ซึ่งเท่ากับว่ามีเถ้าชีวมวลเกิดขึ้นเกือบ 1 ล้านตันในแต่ละปี คำถามที่ตามมา...เราจะจัดการกับขยะเถ้าชีวมวลจำนวนมหาศาลนี้ได้อย่างไรบ้าง?
เถ้าชีวมวลจัดเป็นของเสียอุตสาหกรรม จึงต้องได้รับการกำจัดอย่างถูกต้องตามกฎหมายเพื่อป้องกันผลกระทบต่อสิ่งแวดล้อม เช่น การฝังกลบตามหลักสุขาภิบาล การใช้เป็นวัตถุดิบทดแทนในเตาเผาปูนซีเมนต์ การหมักทำปุ๋ยและสารปรับปรุงคุณภาพดิน หรือการนำกลับมาใช้ประโยชน์ในรูปแบบอื่นๆ
อย่างไรก็ตาม ปริมาณเถ้าชีวมวลที่เกิดขึ้นมีจำนวนมากเกินไป ทำให้มีค่าใช้จ่ายในการกำจัดที่สูง เถ้าชีวมวลปริมาณ 80,000 – 100,000 ตัน มีค่ากำจัดสูงถึง 10-15 ล้านบาท และเพื่อลดค่าใช้จ่ายในการกำจัด และเพิ่มมูลค่าให้กับเถ้าชีวมวลเหล่านี้ จึงมีการศึกษาและพัฒนาวัสดุก่อสร้างโดยใช้เถ้าชีวมวลเป็นส่วนประกอบ
“เถ้าชีวมวล” มีศักยภาพในการใช้เป็นวัสดุทดแทน “ปูนซีเมนต์” ในการผลิตวัสดุก่อสร้างได้จริงหรือ?
โดยทั่วไปแล้วปูนซีเมนต์เป็นวัสดุหลักในการผลิตคอนกรีต เนื่องจากปูนซีเมนต์สามารถทำปฏิกิริยากับน้ำ หรือที่เรียกว่าปฏิกิริยาไฮรเดรชัน (Hydration) เกิดสารประกอบแคลเซียมซิลิเกตไฮเดรต (C-S-H) ที่ช่วยเพิ่มความแข็งแรงทนทานให้กับคอนกรีต การใช้เถ้าชีวมวลแทนที่ปูนซีเมนต์จึงส่งผลต่อคุณสมบัติของคอนกรีตเป็นอย่างมาก
เถ้าชีวมวลมีองค์ประกอบหลักเป็นแคลเซียมออกไซด์ (CaO) ในขณะที่มีปริมาณซิลิกา (SiO₂) อะลูมิน่า (Al₂O₃) และเหล็กออกไซด์ (Fe₂O₃) ต่ำ จึงทำให้เกิดปฏิกิริยาไฮรเดรชันลดลง อย่างไรก็ตาม SiO₂, Al₂O₃ หรือ Fe₂O₃ สามารถทำปฏิกิริยาปอซโซลาน (Pozzolanic Reaction) กับแคลเซียมไฮดรอกไซด์ (Ca(OH)₂) เกิดเป็นสารประกอบ C-S-H ซึ่งนอกจากช่วยเพิ่มกำลังอัดของคอนกรีตในระยะยาวได้แล้ว ยังช่วยเพิ่มความทนทานต่อซัลเฟต กรด และการเกิดคราบขาวบริเวณผิวคอนกรีตได้
อย่างไรก็ตาม การเพิ่มปริมาณเถ้าชีวมวลมากเกินไป ก็จะทำให้กำลังอัดของคอนกรีตลดลง เถ้าชีวมวลมีอนุภาคขนาดเล็ก และน้ำหนักเบากว่าปูนซีเมนต์ ทำให้คอนกรีตมีน้ำหนักเบา รวมทั้งอนุภาคขนาดเล็กยังสามารถเติมเต็มช่องว่างภายในของคอนกรีตได้ นอกจากนี้ เถ้าชีวมวลยังมีรูพรุน และพื้นที่ผิวสูง ทำให้ดูดซึมน้ำได้ดี ส่งผลให้คอนกรีตที่ได้มีการดูดกลืนน้ำสูง และจำเป็นต้องเพิ่มปริมาณน้ำในกระบวนการผลิตเพื่อชดเชยน้ำบางส่วนที่ถูกดูดซึม
เราจะเห็นได้ว่า เถ้าชีวมวลส่งผลต่อคุณสมบัติของคอนกรีตเป็นอย่างมาก โดยขึ้นอยู่กับชนิด องค์ประกอบทางเคมี และปริมาณของเถ้าชีวมวล การใช้เถ้าชีวมวลในการพัฒนาวัสดุก่อสร้างจึงเหมาะสมสำหรับการใช้งานที่ไม่ต้องการความสามารถในการรับน้ำหนักสูง เช่น ขอบคันหิน วัสดุปูพื้น งานตกแต่งสวน หรือช่องระบายอากาศ โดยอัตราส่วนที่เหมาะสมในการใช้เถ้าชีวมวลเป็นวัสดุทดแทนปูนซีเมนต์ คือ 10-30% โดยน้ำหนักของปูนซีเมนต์ แต่ทั้งนี้ก็ขึ้นอยู่กับชนิดและคุณสมบัติของเถ้าชีวมวล องค์ประกอบของคอนกรีต และอัตราส่วนของผสม
อีกสิ่งที่สำคัญคือ การสร้างความโดดเด่นหรือจุดแข็งกว่าผลิตภัณฑ์ในท้องตลาด การออกแบบผลิตภัณฑ์ให้มีความแตกต่าง ทั้งด้านรูปร่าง ความสวยงาม หรือมีฟังก์ชันการใช้งานพิเศษจึงเป็นสิ่งที่สำคัญ เพื่อเพิ่มความสามารถในการแข่งขัน และเป็นการสร้างเศรษฐกิจหมุนเวียนที่ยั่งยืน
เนื้อหาโดย คุณ สุพรรณภางค์ รักษาวงค์ นักวิจัยวัสดุ Sustainable Building Material
อ้างอิงข้อมูลจาก
กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน. 2568. แผนที่แสดงที่ตั้งโรงไฟฟ้าชีวมวลในประเทศไทย.
ขวัญชีวา หยงสตาร์, นุอนันท์ คุระแก้ว, ชูเกียรติ ชูสกุล, และ สุนันท์ มนต์แก้ว. 2567. การพัฒนาอิฐบล็อกประสานจากฝุ่นหินเหลือทิ้งและเถ้าไม้ยางพารา. วารสารวิชาการและวิจัย มทร.พระนคร สาขาวิทยาศาสตร์และเทคโนโลยี ปีที่ 18 ฉบับที่ 1 (2567).
สาโรจน์ ดำรงศีล. 2550. ผลกระทบของปูนซีเมนต์ผสมเถ้าชานอ้อยและเถ้าลอยในลักษณะบดร่วมต่อคุณสมบัติทางกายภาพและเชิงกลของคอนกรีต. วารสารวิชาการและวิจัย มจธ. ปีที่ 30 ฉบับที่ 3 กรกฎาคม-กันยายน (2550).
Ayobami A. B., 2021. Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: Overview, Resources, Conservation and Recycling. 166, 105351.